Evaluation of Predictive Data Mining Algorithms in Erythemato-Squamous Disease Diagnosis
نویسندگان
چکیده
A lot of time is spent searching for the most performing data mining algorithms applied in clinical diagnosis. The study set out to identify the most performing predictive data mining algorithms applied in the diagnosis of Erythemato-squamous diseases. The study used Naive Bayes, Multilayer Perceptron and J48 decision tree induction to build predictive data mining models on 366 instances of Erythemato-squamous diseases datasets. Also, 10-fold cross-validation and sets of performance metrics were used to evaluate the baseline predictive performance of the classifiers. The comparative analysis shows that the Naive Bayes performed best with accuracy of 97.4%, Multilayer Perceptron came out second with accuracy of 96.6%, and J48 came out the worst with accuracy of 93.5%. The evaluation of these classifiers on clinical datasets, gave an insight into the predictive ability of different data mining algorithms applicable in clinical diagnosis especially in the diagnosis of Erythemato-squamous diseases.
منابع مشابه
Genetic algorithm wrapped Bayesian network feature selection applied to differential diagnosis of erythemato-squamous diseases
a r t i c l e i n f o a b s t r a c t This paper presents a new method for differential diagnosis of erythemato-squamous diseases based on Genetic Algorithm (GA) wrapped Bayesian Network (BN) Feature Selection (FS). With this aim, a GA based FS algorithm combined in parallel with a BN classifier is proposed. Basically, erythemato-squamous dataset contains six dermatological diseases defined wit...
متن کاملApplication of Machine Learning Techniques to Differential Diagnosis of Erythemato-Squamous Diseases
This paper is about the implementation of a visual tool for Differential Diagnosis of Erythemato-Squamous Diseases based on the classification algorithms; Nearest Neighbor Classifier (NN), Naive Bayesian Classifier using Normal Distribution (NBC) and Voting Feature Intervals-5 (VFI5). This tool enables the doctors to differentiate six types of ErythematoSquamous Diseases using clinical and hist...
متن کاملComparison of the Efficiency of Data Mining Algorithms in Predicting the Diagnosis of Diabetes
Background: Diabetes is one of the major health problems in Iran and about 4.6 million adults suffer from this disease. Poor diagnosis of this disease has caused half of this number to be unaware of their disease. In recent years, along with the use of computers in data analysis and storage, the volume and complexity of data has increased dramatically. Methods: In health organizations, data pl...
متن کاملEvaluation of Data Mining Algorithms for Detection of Liver Disease
Background and Aim: The liver, as one of the largest internal organs in the body, is responsible for many vital functions including purifying and purifying blood, regulating the body's hormones, preserving glucose, and the body. Therefore, disruptions in the functioning of these problems will sometimes be irreparable. Early prediction of these diseases will help their early and effective treatm...
متن کاملA New Knowledge-Based System for Diagnosis of Breast Cancer by a combination of the Affinity Propagation and Firefly Algorithms
Breast cancer has become a widespread disease around the world in young women. Expert systems, developed by data mining techniques, are valuable tools in diagnosis of breast cancer and can help physicians for decision making process. This paper presents a new hybrid data mining approach to classify two groups of breast cancer patients (malignant and benign). The proposed approach, AP-AMBFA, con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1501.00607 شماره
صفحات -
تاریخ انتشار 2014